Urea Synthesis and Excretion in Aedes aegypti Mosquitoes Are Regulated by a Unique Cross-Talk Mechanism

نویسندگان

  • Jun Isoe
  • Patricia Y. Scaraffia
چکیده

Aedes aegypti mosquitoes do not have a typical functional urea cycle for ammonia disposal such as the one present in most terrestrial vertebrates. However, they can synthesize urea by two different pathways, argininolysis and uricolysis. We investigated how formation of urea by these two pathways is regulated in females of A. aegypti. The expression of arginase (AR) and urate oxidase (UO), either separately or simultaneously (ARUO) was silenced by RNAi. The amounts of several nitrogen compounds were quantified in excreta using mass spectrometry. Injection of mosquitoes with either dsRNA-AR or dsRNA-UO significantly decreased the expressions of AR or UO in the fat body (FB) and Malpighian tubules (MT). Surprisingly, the expression level of AR was increased when UO was silenced and vice versa, suggesting a cross-talk regulation between pathways. In agreement with these data, the amount of urea measured 48 h after blood feeding remained unchanged in those mosquitoes injected with dsRNA-AR or dsRNA-UO. However, allantoin significantly increased in the excreta of dsRNA-AR-injected females. The knockdown of ARUO mainly led to a decrease in urea and allantoin excretion, and an increase in arginine excretion. In addition, dsRNA-AR-injected mosquitoes treated with a specific nitric oxide synthase inhibitor showed an increase of UO expression in FB and MT and a significant increase in the excretion of nitrogen compounds. Interestingly, both a temporary delay in the digestion of a blood meal and a significant reduction in the expression of several genes involved in ammonia metabolism were observed in dsRNA-AR, UO or ARUO-injected females. These results reveal that urea synthesis and excretion in A. aegypti are tightly regulated by a unique cross-talk signaling mechanism. This process allows blood-fed mosquitoes to regulate the synthesis and/or excretion of nitrogen waste products, and avoid toxic effects that could result from a lethal concentration of ammonia in their tissues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of dengue virus in Aedes aegypti and Aedes albopictus spp. of mosquitoes: A study in Khyber Pakhtunkhwa, Pakistan

Dengue is a vector-borne disease caused by dengue virus. According to the recent report of CDC that one-third population of the world are at high risk with Dengue fever. The prevalence of the dengue hemorrhagic fever was found more in tropical and sub-tropical regions of the world. Aedes mosquitoes was reported as the main cause of transmission of dengue virus. So the current study was planned ...

متن کامل

Discovery of an alternate metabolic pathway for urea synthesis in adult Aedes aegypti mosquitoes.

We demonstrate the presence of an alternate metabolic pathway for urea synthesis in Aedes aegypti mosquitoes that converts uric acid to urea via an amphibian-like uricolytic pathway. For these studies, female mosquitoes were fed a sucrose solution containing (15)NH4Cl, [5-(15)N]-glutamine, [(15)N]-proline, allantoin, or allantoic acid. At 24 h after feeding, the feces were collected and analyze...

متن کامل

Study of the fragmentation of arginine isobutyl ester applied to arginine quantification in Aedes aegypti mosquito excreta.

It has been demonstrated that argininolysis and uricolysis are involved in the synthesis and excretion of urea in Aedes aegypti female mosquitoes. To further investigate the metabolic regulation of urea in female mosquitoes, it is desirable to have a rapid and efficient method to monitor arginine (Arg) concentration in mosquito excreta. Thus, a procedure currently used for the identification of...

متن کامل

Phylogenetic Analysis of Aedes aegypti Based on Mitochondrial ND4 Gene Sequences in Almadinah, Saudi Arabia

Background: Aedes aegypti is the main vector of the yellow fever and dengue virus. This mosquito has become the major indirect cause of morbidity and mortality of the human worldwide. Dengue virus activity has been reported recently in the western areas of Saudi Arabia. There is no vaccine for dengue virus until now, and the control of the disease depends on the control of the vector. Objectiv...

متن کامل

Protein catabolism in mosquitoes: ureotely and uricotely in larval and imaginal Aedes aegypti.

Catabolism of excess dietary protein by Aedes aegypti was investigated during larval development, during and after metamorphosis. Activity profiles were established for xanthine dehydrogenase (XDH, uricotelic pathway) and arginase (ureotelic pathway). Both enzymes are active at all times during the life-cycle. During the aquatic larval and pupal instars, XDH and arginase activities increase wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013